Serum Apolipoprotein Profiling for addressing Residual Cardiovascular Risk:

in search of a personalized and metrologically sound answer in this era of Precision Medicine

C.M. Cobbaert, EuSpLM, PhD, Prof.

Chair IFCC Scientific Division WG-APO MS Department of Clinical Chemistry and Laboratory Medicine Leiden University Medical Centre, Leiden, the Netherlands

EUROPEAN COMMISSION

CardioMet Project & Consortium:

Providing the measurement infrastructure to allow quantitative diagnostic methods for biomarkers of coronary heart diseases

- I. Trends: Healthcare System development, Technological Advances & Biomarker (R)Evolution
- II. Unmet Clinical Needs for CVRM anno 2019
- How to address Unmet Clinical Needs for CVRM?
 A. EAS-EFLM consensus statement, 2018
 B. Evidence for CV Precision Medicine with serum Apolipoprotein Profiling
- **IV. Establishing multiplexed MS-based Apolipoprotein tests**
- V. Conclusions: paving the way for Cardiovascular Precision Diagnostics

I. Healthcare System Development

Current practice: targeting the hypothetical average

Healthcare System Development

Current practice:

targeting the hypothetical average

Evolving practice: Precision Medicine

More precise definitions of health /disease & more precise characterization of populations / patients are needed with potential to translate into targeted therapeutics with improved response rate.

Technological Advances

New technologies change the ways health status can be assessed!

Mobile health (m-health) devices and sensors

revolutionized the measurement of human dynamic physiology e.g. BP, heart rhythm, brain waves, air quality...

Deriving a phenotypic repertoire at scale

Finding novel pathways by leaving empirical science's tendency to mostly build on known paradigms.

To fully redeem the promise of precision medicine, we should integrate data on all fronts from genomes to phenomes.

Zoom in *mass spectrum* provides new views

Resolving power of a mass spectrometer: From early day hundreds (1980s) to state-of-the-art millions

Zoom provides detail and new views

from the Netherlands, to Leiden, to the LUMC, to our routine lab...

The term proteoform was proposed in 2012 "TO DESIGNATE ALL OF THE

DIFFERENT FORMS IN WHICH THE PROTEIN PRODUCT OF A SINGLE GENE CAN BE

FOUND" (Neil Kelleher)

Cobbaert et al. Clin Lab Med 2018

followed in 2014 by the hypothesis that "INTACT PROTEOFORMS REPRESENT A

CLASS OF MOLECULES FOR USE AS BIOMARKERS OF DISEASE STATES"

Biomarker (R)Evolution

Biomarker qualification at PRESENT

Identified in **observational studies**

Association with disease

Unimarker tests, with heterogenous mixture of measurands.

Surrogate measures at best with weak or unclear relation to patient outcome.

Biomarker qualification in the FUTURE

Large data, open-discovery approach with -omics, big data and PM

Inter-related Molecular Alterations, organized into mechanistic pathways

Multimarker <u>PANELS</u> with well characterized molecular forms.

Molecular Markers reflect disease course, give mechanistic insight, or are usable as therapeutic target*.

*The closer a test is related to the pathophysiology of disease and to the mechanism of action of the proposed therapy, the better will be its precision and thereby its usefulness as stratification tool or to inform personalized approaches.

II. Numerous Unmet Clinical Needs for CVRM!?

From biomarkers to medical tests: the changing landscape of Test Evaluation. Horvath AR et al., CCA 2014

Total cholesterol Total triglycerides Direct HDLc Direct or calculated LDLc

Unmet Clinical Needs with LDL-C lowering

Trial (N)	Statin treatment	Risk reduction vs. placebo	
WOSCOPS** (6595)	Pravastatin 40 mg	31%	
AFCAPS/TexCAPS** (6605)	Lovastatin 20 or 40 mg	40%	
ASCOT-LLA** (10,305)	Atorvastatin 10 mg	38%	62%
4S** (4444)	Simvastatin 20 mg	26%	74%
CARE*** (4159)	Pravastatin 40 mg	24%	
LIPID*** (9014)	Pravastatin 40 mg	24%	
HPS*** (20,536)	Simvastatin 40 mg	27%	
PROSPER*** (5804)	Pravastatin 40 mg	24%	

Clinical events*

*Nonfatal and fatal myocardial infarction

Primary prevention trial; *Secondary prevention trial

\rightarrow Further reduce LDL-C ?

 \rightarrow Further investigate and treat other factors responsible for residual risk?

Residual risk remains high on PCSK9 inhibition

Sabatine MS et al. N Engl J Med 2017;376:1713-22

Unmet Clinical Needs beyond LDLc

15

2019

ACB,

et al., /

Ruhaak (

The **«FORGOTTEN»** phenotype

Simplified flowchart showing the essentials of (apo)lipoprotein metabolism LU

MC

https://en.wikipedia.org/wiki/Lipoprotein

III. How to address Unmet Clinical Needs for CVRM?

L U M C

Clinical Chemistry 64:7 1006-1033 (2018)

Special Report

Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM

Michel R. Langlois,^{1*} M. John Chapman,² Christa Cobbaert,³ Samia Mora,⁴ Alan T. Remaley,⁵ Emilio Ros,⁶ Gerald F. Watts,⁷ Jan Borén,⁸ Hannsjörg Baum,⁹ Eric Bruckert,¹⁰ Alberico Catapano,¹¹ Olivier S. Descamps,¹² Arnold von Eckardstein,¹³ Pia R. Kamstrup,¹⁴ Genovefa Kolovou,¹⁵ Florian Kronenberg,¹⁶ Anne Langsted,¹⁴ Kari Pulkki,¹⁷ Nader Rifai,¹⁸ Grazyna Sypniewska,¹⁹ Olov Wiklund,⁸ and Børge G. Nordestgaard,¹⁴ for the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative

AND LABORATORY MEDICINE

- 1. Which atherogenic lipoproteins should be measured?
- 2. Are we using the appropriate biomarker(s)?
- 3. Is it time to move from standard LDL-C to advanced (apo)lipoprotein testing strategies?
- 4. Consensus recommendations

Unchanged lipid profiling for decades: are we struggling with reductionism!?

Quantifying Atherogenic Lipoproteins

> Remnant particles?

> LDL-particles?

Lipoprotein(a) particles?

Remnant cholesterol* explains part of Residual Risk of all cause mortality in 5414 patients with IHD

HR for all-cause mortality (95% CI)

*Calculated as TC – HDL-C – LDL-C

Jepsen AK et al. Clin Chem 2016;62:593-604

Lipoprotein (a) particle

Evidence for Lp(a) as an independent **GENETIC** CV risk factor

Tsimikas S et al. J Clin Lipidology 2018

- 1. Which atherogenic lipoproteins should be measured?
- 2. Are we using the appropriate biomarker(s)?
- 3. Is it time to move from standard LDL-C to advanced (apo)lipoprotein testing strategies?
- 4. Consensus recommendations

Novel therapies reduce LDL-C to very low concentrations

JN The JAMA Network

From: The LAPLACE-2 Randomized Clinical Trial JAMA 2014;311:1870-83

Friedewald formula: fit for the new era of very low LDLC ?

Relative Risk Ratios for LDL-C, non-HDL-C, and apoB in 12 fasting and non-fasting population studies

META-ANALYSIS

LDL-C 1.25 (1.18-1.33) non-HDL-C 1.34 (1.24-1.44) ApoB 1.43 (1.35-1.51)

Sniderman A. et al. Circ Cardiovasc Qual Outcomes 2011;4:337-345

EAS-EFLM consensus & Cardiovascular Test Performance Characteristics

TEST CHARACTERISTICS	LDL-C	non-HDL-C	АроВ
Analytical performance			
Accurate assays (method independency)	No	No	Yes
Nonfasting measurement possible	With TG<4.5 mmol/l	Yes	Yes
Widely accessible, automated assays	Yes	Yes	Yes
Reasonable operational costs	Yes	No extra cost	Yes
Clinical performance			
Robust associations with incident CVD?	Yes	Yes	Yes
Novel information beyond existing markers?	(Reference)	Yes	Yes
Validated decision limits?	No	No	No
Clinical effectiveness			
Superiority to existing tests?	(Reference)	Probably	Probably
Modifiable risk association (treatment target)?	Yes	Yes	Yes
Biomarker-guided treatment reduces CVD	Yes	Probably	Probably
risk?			
Cost effectiveness			
Biomarker-guided treatment saves healthcare	Yes	Unknown	Unknown
costs?			

M. Langlois et al. EAS-EFLM Consensus Panel. Clin Chem 2018;64:1006-33.

- 1. Which atherogenic lipoproteins should be measured?
- 2. Are we using the appropriate biomarker(s)?
- 3. Is it time to move from standard LDL-C to advanced (apo)lipoprotein testing strategies?
- 4. Consensus recommendations

Apolipoproteins: holy grail for unraveling dyslipidemia?

Apolipoprotein	MW	Primary Source	Lipoprotein Association	Function
Apo A- Apo A- Apo A- Apo A- Apo B- Apo B- Apo B-	No or uide	r lim lines	ited use i for CVR	n clinical s M so far!
Apo C-I	6,600	Liver	Chylomicrons, VLDL, HDL	Activates LCAT
Apo C-II	8,800	Liver	Chylomicrons, VLDL, HDL	Co-factor for LPL
Apo C-III	8,800	Liver	Chylomicrons, VLDL, HDL	Inhibits LPL and uptake of lipoproteins
Apo E	34,000	Liver	Chylomicron remnants, IDL, HDL	Ligand for LDL receptor
Apo (a)	250,000- 800,00	Liver	Lp (a)	Inhibits plasminogen activation

Systems Medicine & the complexity of chronic diseases

i. Plasma Apolipoprotein PANEL predicts incident CVD

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 7, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.11.066

EDITORIAL COMMENT

Deep Apolipoprotein Proteomics to Uncover Mechanisms of Coronary Disease Risk*

Daniel J. Rader, MD,^{a,b,c,d,e} Archna Bajaj, MD,^{a,b,d,e} Sumeet A. Khetarpal, PнD^{a,b,d,e}

Bruneck Population Study

- **1. Prospective, population-based survey** of the epidemiology and pathogenesis of atherosclerosis and CVD.
- 2. Age and sex-stratified random sample of inhabitants of Bruneck, Italy, all of Caucasian descent.
- 3. Detailed information on **fatal and nonfatal CVD** after **10 year of follow-up**, with follow-up 100% complete for clinical outcomes (N = 688). Clinical outcomes were adjudicated by 1 senior researcher blinded to baseline data.
- 4. Multiplex measurement of 13 plasma apolipoproteins with **MS-based bottom-up quantitative proteomics**, beyond classical serum lipids.
- Associations of 13 plasma apolipoproteins and lipids with incident CVD over 10 years were studied.

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE (http://creativecommons.org/licenses/by/4.0/). VOL. 69, NO. 7, 2017 ISSN 0735-1097 http://dx.doi.org/10.1016/j.jacc.2016.11.065

Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III Bruneck study

Raimund Pechlaner, MD, PHD,^a Sotirios Tsimikas, MD,^{b,c} Xiaoke Yin, PHD,^d Peter Willeit, MD, PHD,^{a,e} Ferheen Baig, MSc,^d Peter Santer, MD,^f Friedrich Oberhollenzer, MD,^f Georg Egger, MD,^g Joseph L. Witztum, MD,^b Veronica J. Alexander, PHD,^c Johann Willeit, MD,^a Stefan Kiechl, MD,^a Manuel Mayr, MD, PHD^d

Conclusions from the Bruneck Population Study

- 1. Apolipoprotein profiling provides strong epidemiological support to the concept that TRLs <u>contribute</u> to atherosclerosis.
- 2. ApoC-II, apoC-III, and apoE are abundant on VLDL, which may represent underappreciated <u>RISK FACTORS</u> for CVD.
- 3. Intervention trials with volanesorsen demonstrate that targeting apoC-III favorably affects apolipoprotein and lipid profiles. Thus, lowering VLDL, in addition to LDL and lipoprotein(a), might represent a novel strategy to further reduce CVD risk in the statin era, and should be tested by appropriately designed outcome trials.

ii. MS-based apolipoprotein profiling in a clinical study of patients with STEMI

Journal of Clinical Lipidology (2017)
,

Original Article

Low levels of apolipoprotein-CII in normotriglyceridemic patients with very premature coronary artery disease: Observations from the MISSION! Intervention study-R2

Maaike P. J. Hermans, MD, Mathijs C. Bodde, MD, Wouter J. Jukema, MD, PhD*, Martin J. Schalij, MD, PhD, Arnoud van der Laarse, PhD, Christa M. Cobbaert, PhD, Pharm, EurSpLM

Secondary prevention trial in ACS patients

BACKGROUND: while the overall AMI rates declined in women and men, however <u>premature</u> AMI rates remained stable in men and increased in women.

OBJECTIVE: to assess whether baseline apolipoprotein (apo) levels, clinical characteristics, and follow-up of **patients with very premature coronary artery disease (CAD)** could provide novel clues for the identification of high-risk individuals.

METHODS: serum apo panel measured with a validated quantification LC-MS method in a well-defined cohort of patients aged ≤ 45 years admitted with acute STEMI.

PATIENTS: 1st STEMI who were initially included in the MISSION! Intervention Trial and had 10 years of follow-up

Apo CII "deficient" subgroup with deleterious outcome

Mean age: 39.8 \pm 4.6 years and 24% was female.

ApoCII is primarily synthesized in the liver and serum concentrations normally range from 22 to 55 mg/L, which corresponds with a median level of apoCII of 30.9 mg/L in our cohort of patients with very premature CAD.

Apo CII is an activator of LPL.

Estimated adverse event free survival (free of reinfarction or revascularization) in premature CAD patients stratified by baseline apo C-II levels.

Classical apo CII deficiency acc. to textbooks

Apo CII is an apoprotein component of VLDL that activates the enzyme LPL, which hydrolyzes TG and thus provides free fatty acids for cells. **Total lack of apoCII** (1:10⁶) is assumed to result in **intravascular TG accumulation** because of non-activation of LPL!

Classical apoCII-deficient patients present with eruptive xanthomas, chronic pancreatitis and hepatosplenomegaly, early atherosclerosis as a consequence of fasting chylomicronemia and extremely high levels of TG.

Eruptive xanthomas

Milky plasma

Apo profiling reveals a NEW apo CII deficient phenotype

- In 38 patients with very premature CAD, 4 (11%) were found to have low apoCII levels (≤5.0 mg/L; undetectable) with normal triglyceride levels.
- Despite a misleading low a priori risk for CAD, these patients presented with ST-segment elevation myocardial infarction and had a high relative risk of 10-year reinfarction or revascularization.
- 3. This particular phenotype of relatively **young female patients** with CAD is not recognized earlier and deserves further study.

IV. Challenges for Quantification of MULTIPLEXED Apolipoprotein Tests using bottum-up Proteomics

ADVANTAGES of bottom-up proteomics:

- Antibody independent
- Enables multiplexed tests
- 'lower' production costs
- Allows for molecular characterization of the measurand

ASSUMPTIONS of bottom-up proteomics:

- Intact protein present in matrix
- No modifications in quantifying peptides (unless these are targeted)
- Equimolar or at least stable digestion of proteins, independent of matrix

MS-based workflow for (apolipo)protein quantitation

Advancing excellence in laboratory medicine for better healthcare worldwide

Long term stability of *in house* multiplex MS-based apo test

nternational Federation of Clinical Chemistry and Laboratory Medicine

Advancing excellence in laboratory medicine for better healthcare worldwide

Ruhaak et al. Clin Chem, 2018, adapted with additional data

Lp(a) structural characteristics and their impact on Lp(a) measurement

Lp(a) particle:

- ✓ the most complex and polymorphic of all serum lipoproteins
- ✓ Highly prevalent
- ✓ 50 yrs of intense research and still poorly understood

Presence of a unique, hydrophilic, highly glycosylated protein,

- ✓ covalently attached to apoB in Lp(a)
- ✓ ~80% AA homology with plasminogen (PLG)
- ✓ multiple copies of PLG-like kringle IV Type 2 (K4): 3 to >40

Variety of IMMUNOCHEMICAL METHODS, CE-IVD approved:

- ✓ ELISA
- ✓ Nephelometry
- ✓ Immunoturbidimetry
- ✓ DELFIA

mostly expressing the measured apo(a) in Lp(a) mass units (mg/L or mg/dL)!

Lp(a) mass tests: interlaboratory variation in the Netherlands anno 2018

Unharmonized Lp(a) test results!

Terms of Reference:

- To use MS for standardization of a panel of clinically relevant serum apolipoproteins (apo) <u>A-I, B, C-I, C-II, C-III, E and apo (a)</u> (including qualitative phenotyping where needed). Standardization will be done in such a way that measurement results <u>are traceable to SI as outlined in ISO 17511</u>. Other traceability chains will be used in cases where traceability to SI cannot be achieved.
- To evaluate clinical performance and clinical utility of serum apolipoprotein panel(s) for CVRM, in comparison to or together with contemporary blood lipids, in order to understand their added value for addressing unsolved residual CV risk.

1/2

Potential of multiplex MS-based apolipoprotein profiling for CV Precision Medicine

51

of Clinical Chemistry and Laboratory Medicine

Advancing excellence in laboratory medicine for better healthcare worldwide

Ruhaak, vd Laarse and Cobbaert, ACB, 2019

d Laboratory Medicine

Knowing is not enough, we must apply. Willing is not enough, we must do.

JW von Goethe

Advancing excellence in laboratory medicine for better healthcare worldwide

Acknowledgements

LUMC, Clinical Chemistry

Renee Ruhaak Fred Romijn Nico Smit Tirsa van Duijl Mervin Pieterse Arnoud van der Laarse Yuri van der Burgt

IFCC WG APO-MS

Zsuzanna Kukleniyk and Hubert Vesper, CDC, USA Uta Ceglarek and Julia Dietrich, Univ Leipzig, Germany Renee Ruhaak, Leiden Uni Medical Centre

Gert Kostner, Univ Graz, Austria Florian Kronenberg, Univ Innsbruck, Austria Andy Hoofnagle, Univ Washington, USA

Liesbet Deprez and Ingrid Zeegers, JRC, Belgium Ioannis Dikaios, JRC, Belgium Vincent Delatour, LNE, France

Harald Althaus, Siemens Urban Prinzing, Roche

International Federation of Clinical Chemistry and Laboratory Medicine

EAS-EFLM Joint Consensus Panel

Michel Langlois

Cardiomet Consortium